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Received 1 June 1988 

Abstract. We model the polymer as a self-avoiding walk on a semi-infinite square lattice 
with an energy contribution - E  from each step along the lattice boundary. The critical 
adsorption temperature T, and the ‘ordinary’ and ‘special’ surface exponents of the walk 
above and at the adsorption temperature, respectively, are estimated with transfer-matrix 
finite-size scaling methods. For the adsorption temperature we obtain exp( E /  kT,) = 
2.041 tt0.002, and for the crossover and susceptibility exponents of the special transition, 
+Ip = 0.501 * 0.003 and yip = 1.454 * 0.004. 

We consider the self-avoiding walk on a semi-infinite lattice with energy defined by 

E = - E N , .  (1) 

Here E is a positive constant, and NI is the number of steps that coincide with the 
edge of the lattice. This is a standard model for a long flexible polymer in a good 
solvent with an attractive short-range force between the polymer and the container 
wall (Eisenriegler et a1 1982, Binder and Kremer 1985 and references therein). 

The model exhibits a transition at a critical adsorption temperature T,, with a 
desorbed phase for T > T, and an adsorbed phase for T < T,. Using the correspon- 
dence (De Gennes 1979) between this transition and magnetic phase transitions of the 
semi-infinite n-vector model in the limit n + 0, Eisenriegler et a1 (1982) have given a 
comprehensive discussion of the universal exponents that characterise the family of 
walks of N steps in the large-N limit. We recall the definitions of three surface 
exponents $, $p, +sp which, together with bulk exponents and scaling relations, 
determine the other most common surface exponents. The partition function Z,( N, T) 
of walks with one end attached to the boundary has the asymptotic form 

In Z , ( N ,  T )  = N In qeff + ( yy -  1) In N 

In Z,( N, T )  = N In qeff + (rip - 1) In N 

T >  T, 
T =  T, 

(2a) 

(2b) 
as N + CO with fixed T. Here qeff is an effective coordination number or connectivity 
constant. For T > T, the average number (NI) of steps of the walk in contact with the 
boundary remains finite in the limit N + CO. However, at the critical temperature 

(NI) - N+’p T =  T, (3) 
where +sp is non-zero. The superscripts o and sp of the exponents underline the 
correspondence with the ‘ordinary’ and ‘special’ or ‘multicritical’ transitions of magnetic 
systems (Eisenriegler et a1 1982, Binder 1983). 
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The bulk and surface exponents of the self-avoiding walk in two and three 
dimensions have been estimated by a variety of methods including exact enumerations, 
expansions in E = 4 - d, and Monte Carlo techniques (see Binder and Kremer 1985 for 
a recent review). In addition, in two dimensions exact values y = 43/32, v = 3/4 for 
the bulk exponents have been predicted from Coulomb-gas (Nienhuis 1982, Den Nijs 
1983) and conformal invariance (Dotsenko and Fateev 1984, Cardy 1987) arguments. 
Extending the conformal invariance approach to the half-plane geometry, Cardy 
(1984a) has derived the result yy = 61/64 for the surface exponent in equation (2a).  

Some of the most precise numerical estimates of the scaling indices of the self- 
avoiding walk in two dimensions have been obtained with transfer-matrix finite-size 
scaling techniques (Derrida 1981, Saleur and Derrida 1986, Duplantier and Saleur 
1986, Saleur 1987a, b). In this paper we use the same approach to calculate the critical 
adsorption temperature and the surface exponents of the model described above on 
the square lattice. Our results, like those of Duplantier and Saleur (1986), confirm the 
predictions of conformal invariance for the high-temperature phase. The main motiva- 
tion of our work was to study the critical behaviour right at the adsorption temperature. 
We hoped to improve upon the precision of earlier determinations of T, and q t ~ ‘ ~  
(De’Bell 1979, Ishinabe 1983, Kremer 1983) and to estimate yip, which, as far as we 
know, has not been evaluated previously in two dimensions. 

In our finite-size scaling analysis, self-avoiding walks on a strip of square lattice 
with infinite length and a width of L lattice constants are considered. We work in the 
grand canonical ensemble and assign a surface fugacity K ,  to each step along either 
edge of the strip and a bulk fugacity K to each of the other steps. Generalising the 
approach of Derrida and Saleur slightly to accommodate the two fugacities K,  and 
K,  we consider transfer matrices Tk)(K, ,  K ) ,  i = 1,2,  for one and two self-avoiding 
walks on the strip, respectively. The largest eigenvalue A t )  of T k )  determines the 
characteristic length 

&)(K, ,  K )  = -[In A ~ ) ( K , ,  K)] - ’ .  (4) 
In the n + 0 limit of the n-vector model equivalent to the polymer model, K,  = J,/kT 

and K = J /  kT represent the nearest-neighbour surface and bulk couplings of spins. 
The quantities tp ) ,  [(L) are the usual spin-spin and energy-energy correlation lengths, 
respectively. 

The finite-size scaling properties (Barber 1983) of 6:) follow from standard renor- 
malisation group phenomenology for semi-infinite magnetic systems (see, e.g., Burk- 
hardt and Eisenriegler 1977). For (K , ,  K )  sufficiently close to the fixed point ( K : ,  K * )  
and for L sufficiently large, 

where F‘” is a scaling function of two variables. The appropriate fixed points for the 
polymer problem for T > T, and T = T, are the fixed points of the ordinary and special 
transitions, respectively, of the semi-infinite n + 0 vector model (Eisenriegler et al 1982). 

At both the ordinary and special fixed points, K *  = q;; is the bulk critical coupling 
of the n + O  vector model and the reciprocal of the effective coordination number 
defined in equation (2). For the square lattice K* has the value 

has the form 
f t ) ( K , ,  K)=LF“’(Lys(K, -K$) ,  L Y ( K  - K * ) )  ( 5 )  

K * = 0.379 0528 f 0.000 0025 (6) 
(Derrida 1981, Enting and Guttman 1985). 

We analyse our numerical data for ,.$k)(K,, K )  in two ways. First we set K equal 
to the known critical value of equation (6). Then, in accord with equation ( 5 ) ,  we 
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calculate sequences K,*(L) ,  ys (  L ) ,  y ( L )  = v(L)-' that approach the desired exact values 
as L + CO from the phenomenological renormalisation group equations (Nightingale 
1976, Barber 1983) 

L- '&'(K,*(L) ,  K * )  = ( L -  l)-l('!'(K:(L), K * )  

1 +YS(L) = ln [" ' /~~ , ) / (a~ 'L ' ' , / aK, ) l / ln [~ / (~-  1)l 

1 + y (  L )  = ~ n [ ( a g ' l l ' / a ~ ) / ( a ~ ~ ' , / a ~ ) ] / l n [ ~ / (  L - I)]. 

(7a) 

( 7 6 )  

(7c) 

The derivatives in equations (7b) and (7c) are all evaluated at K,  = K T ( L ) ,  K = K * .  
The estimates obtained in this way from the spin-spin and energy-energy correlation 
lengths ( i  = 1,2) with L = 3, . . . , 10 are listed in tables 1 and 2, respectively. 

Table 1. Fixed-point couplings and critical exponents obtained from the one-polymer 
transfer matrix with equations (6), (7), and (10). 

Ordinary 3 
transition 4 

5 
6 
7 
8 
9 

10 
Exact 

Special 3 
transition 4 

5 
6 
7 
8 
9 

10 
Exact 

0.274 6752 
0.271 9838 
0.270 6985 
0.269 9783 
0.269 5275 
0.269 2197 
0.268 9945 
0.268 8210 

0.778 6861 
0.774 5255 
0.773 2291 
0.772 8089 
0.772 6763 
0.772 6498 
0.772 6652 
0.772 6968 

4.134 7527 
1.935 4722 
1.616 6304 
1.498 8134 
1.441 5244 
1.409 2846 
1.389 3653 
1.376 2217 
41 3 

2.944 9534 
2.150 8281 
1.908 0363 
1.786 6341 
1.712 6116 
1.662 2500 
1.625 4964 
1.597 3457 
41 3 

-1.175 4341 
-1.067 1939 
-1.036 1482 
-1.0227016 
-1.015 6387 
-1.011 4651 
-1.008 7927 
-1.007 0173 
-1 

0.676 6766 
0.682 9858 
0.684 3231 
0.684 0503 
0.683 2882 
0.682 4092 
0.681 5332 
0.6807112 

~ 

1.236 0212 
1.243 7600 
1.246 4723 
1.247 6754 
1.248 2993 
1.248 663 1 
1.248 8952 
1.249 0542 
514 

-0.090 7177 
-0.081 7514 
-0.078 3438 
-0.077 0568 
-0.076 5967 
-0.076 4947 
-0.076 5598 
-0.076 7043 

In the second way of analysing the data we define a two-parameter phenomenologi- 
cal renormalisation (K , ,  K )  + ( K d ,  K ' )  under a rescaling of lengths with scale factor 
b = L/ (L  - 1) according to 

(L - l ) - '&i , (K: ,  K ' ) = L - ' & ' ( K , ,  K )  ( sa>  

(L-l)-'&?,(Kd, K') = L-'(?'(K,,  K ) .  ( 8 b )  

From the fixed points of (8) one obtains a sequence of estimates ( K : ( L ) ,  K * ( L ) )  for 
the fixed-point couplings in the semi-infinite case. Linearising the flow equations 
around the fixed point in the standard manner yields estimates y,(L) ,  y ( L )  = v(L)- '  
for the critical exponents. The data obtained in this way are listed in table 3. 
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Table 2. Fixed-point couplings and critical exponents obtained from the two-polymer 
transfer matrix with equations (6), (7), and (10). 

L K,* Y Y S  2Xj2' 

Ordinary 4 
transition 5 

6 
7 
8 
9 

10 
Exact 

Special 4 
transition 5 

6 
7 
8 
9 

10 
Exact 

0.248 6936 
0.237 2967 
0.242 8591 
0.246 9462 
0.250 0413 
0.252 4526 
0.254 3756 

0.769 9509 
0.773 7605 
0.775 0363 
0.775 4583 
0.775 5513 
0.775 5094 
0.775 4122 

3.246 3712 
1.868 2705 
1.646 2368 
1.539 7126 
1.479 7257 
1.442 4229 
1.417 6031 
41 3 

2.950 3669 
2.334 2868 
2.079 7769 
1.937 9577 
1.846 5519 
1.782 2629 
1.734 3258 
41 3 

~ ~~ 

-1.709 6323 
-1.055 2663 
-1.042 9928 
-1.029 8724 
-1.021 6335 
-1.0163622 
-1.012 8307 
-1 

0.686 4312 
0.681 5401 
0.679 4740 
0.678 3135 
0.677 5285 
0.676 9316 
0.676 4441 

4.016 5487 
4.085 7424 
4.059 2885 
4.042 9431 
4.032 2397 
4.024 8850 
4.019 6352 
4 

0.650 4941 
0.630 0375 
0.622 0777 
0.619 0992 
0.618 3700 
0.618 7301 
0.619 6327 

Table 3. Fixed-point couplings and critical exponents obtained from the one- and two- 
polymer transfer matrices with equations (8) and (10). 

L K *  K,* Y Y S  

Ordinary 6 0.373 9979 0.199 3406 1.295 9819 -0.953 1863 
transition 7 0.3764184 0.2144008 1.3126393 -1.007 2346 

8 0.377 5091 0.223 8463 1.319 8180 -1.015 1048 
9 0.378 0798 0.2306195 1.323 7910 -1.015 1587 

10 0.378 4062 0.235 7651 1.326 2400 -1.013 6400 
Exact 41 3 -1 

Special 4 0.3810506 
transition 5 0.3788458 

6 0.3782735 
7 0.378 1689 
8 0.3782073 
9 0.3782861 

10 0.3783706 
Exact 

0.763 1403 1.525 0151 0.700 9667 
0.774 6615 1.466 7168 0.674 7587 
0.779 1090 1.432 2688 0.666 6915 
0.780 8091 1.409 9974 0.663 8805 
0.781 3411 1.3946479 0.662 9691 
0.781 3470 1.383 5415 0.662 8380 
0.781 1121 1.375 2059 0.663 0415 

41 3 

2 x y  

1.417 0981 
1.360 7476 
1.329 3343 
1.309 4443 
1.295 9735 
514 

-0.063 1970 
-0.080 9357 
-0.089 6168 
-0.094 2919 
-0.0969515 
-0.098 4975 
-0.099 3860 

2 x y  

4.354 2664 
4.236 8078 
4.170 8229 
4.128 7047 
4.099 9900 
4 

0.675 7845 
0.626 3708 
0.604 01 11 
0.593 4247 
0.588 5426 
0.586 6488 
0.586 4034 

Additional numerical information on surface critical indices follows from the 
general relation (Cardy 1984b) 

L-tOa lim ~ - ' , t r ) ( ~ , * ,  K * )  = [ n  xs (i) 1 -1  (9 )  

between the amplitude of a correlation length and the corresponding surface scaling 
index. In tables 1-3 sequences of xl"(L) defined by 

X l " ( L )  = L[T,tY)(K,*(L), K*(L))] - '  
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are given that approach the limiting value x2’) of equation (9) in the large-L limit. 
Since the one and two-polymer correlation lengths &’ and &) correspond to spin-spin 
and energy-energy correlations in the n + 0 vector model, the xii’ are related to the 
conventional exponents of surface critical phenomena (Binder 1983) by 

x p =  1 - ys  = 1 - $/V. (116) 

The numerical data in tables 1-3 for the high-temperature desorbed-polymer phase 
(ordinary transition of the semi-infinite magnetic system) are in excellent agreement 
with the accepted exact values y = v-’ = $ (Nienhuis 1982), y :  = 1 - xL2) = -1 (Burkhardt 
and Cardy 1987), and 2x2” = 77;  = 2 (Cardy 1984a). 

The data in tables 1-3 for critical properties at the polymer adsorption temperature 
(special transition of the semi-infinite magnetic system) are not nearly so well behaved 
as the data for the ordinary transition. The estimates for the bulk exponent y = v-’ 
are again consistent with the limiting value $, but the convergence is slower. Also, 
many of the sequences for surface quantities do not vary monotonically with L but 
pass through smooth maxima or minima, as seen in figures 1-3. Although such 
sequences cannot be extrapolated very reliably, we have obtained fairly precise esti- 
mates by comparing several different sequences for each of the surface quantities. 

Curves 1-3 in figure 1 depict the data from tables 1-3 for K $  at the special transition. 
We make the plausible assumption that for L-’ <0.1 curves 1 and 2 continue to 
approach the limiting value of K $  from below and above, respectively. Then from 
the last entry in the sequences for K $  in tables 1 and 2 we conclude 0.7727 < K $  < 
0.7754. These bounds may be improved slightly by noting that curves 1 and 2 have 
upward and downward curvature, respectively. Thus if one extrapolates each curve 
to L-‘ = 0 by fitting a straight line through the last two points (see inset, figure l ) ,  the 
exact K $  should lie between the extrapolated values. In this way we obtain our final 
result K $  = 0.7738 * 0.0008 and exp( E /  kT,) = K $ /  K * = 2.041 * 0.002. The value for 
exp(s/kT,) is in good agreement with the results 2.05 and 2.01 of Ishinabe (1983) 
from two different analyses of exact data for walks with N S 21. Our value for K $  is 
somewhat larger than the result 0.65 f 0.05 of Kremer’s (1983) real-space renormalisa- 
tion study. 

Unlike conventional magnetic systems on an L x CO strip, the n-vector model for 
n < 1 undergoes one-dimensional transitions (Balian and Toulouse 1974). We obtain 
additional sequences of estimates for K $  at the special transition from the critical 
values KZ(L) for which &’(KZ(L), K * )  =a, with K* given by equation (6). Our 
results for KZ(L) from the one and two-polymer transfer matrices are listed in table 
4 and depicted by curves 4a and 46, respectively, in figure 1 .  The curves are smooth 
and monotonic and when extrapolated with standard algorithms (see, e.g., Henkel and 
Schiitz 1988) yield limiting values K $  in excellent agreement with our estimates from 
curves 1 and 2. 

We now consider the crossover exponent 4sp = yZP/y = 3 ~ : ~ / 4  of the special transi- 
tion. The data for y :p  from tables 1-3 correspond to the lower three curves in figure 
2. The upper two curves show the quantity 1 -x:*), with xi2) taken from tables 2 and 
3. According to equation (116) these two curves should also converge to yEp. The 
lowest two curves in figure 2 yield the most precise bounds on y;”.  From the last entry 
in the corresponding sequences we obtain 0.6630 < y :p  < 0.6764. Since curve 3 has 
upward curvature and curve 2 has begun to turn downwards near L-’=O.l, these 
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0.90 

0.85 

K: 

0.80 

0.75 

/ 
0.115 

0 770 - 
0 0.t 0.2 0.3 

I I I 
0.1 0.2 0.3 > 

L - I  

Figure 1. Estimates of the critical surface coupling K;* of the special transition from tables 
1-4. The broken lines (see inset) show the linear extrapolations on which our stated 
uncertainties are based. 

bounds may also be improved by linear extrapolation (see figure 2) to L-’ = 0. Our 
final result is yZp = 0.668 * 0.004, which corresponds to the crossover exponent 4sp = 
0.501 i0.003. Within our estimated uncertainty yip is consistent with the value 3 and 
4sp with i. For ideal polymers without the self-avoiding restriction the exact crossover 
exponent is also qhSP=f (DiMarzio and McCrackin 1965, Rubin 1965, Eisenriegler et 
al 1982, Hammersley 1982). 

Next we compare our result for the crossover exponent with previous estimates. 
Ishinabe (1983) finds (4””)’ = 1.9 and v / 4 ”  = 1.5, corresponding to 4”= 0.53 and 
0.50, respectively, but does not quote an uncertainty. Kremer (1983) estimates 4sp = 
0.55 2 0.1 from Ishinabe’s table I11 and obtains 0.55 i 0.15 from a real-space renormali- 
sation study. Our result 0.501 i 0.003 is consistent with these estimates and considerably 
more precise. 
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I 

0.70 

0.69 

Y :p 

0.68 

0.67 

0.66 
0 0.1 0.2 

/ 

L -’ 
Figure 2. Estimates of y ,  (filled points) and of 1 -x:*) (empty points) at the special transition 
from tables 1-3. The broken lines show the linear extrapolations on which our stated 
uncertainties are based. 

Finally we consider the exponent ,;p=2x6” which, as far as we know, has not 
been estimated previously in two dimensions. Curves 1 and 3 of figure 3 depict the 
data for 2x:” from tables 1 and 3, respectively. Curves a and b show the quantity 
2L[7r5‘,l)(Ks, K*)]-’ (see equation (10)) with K* given by equation ( 6 )  and with 
K,  = 0.7730 and 0.7745, respectively. According to our above analysis the exact K $  
lies between these two numbers. Values of K,  between the two numbers yield curves 
between a and b. On the basis of curves a and b (see figure 3) we conclude 7tP= 
-0.087 i 0.008. The phenomenon of a negative exponent 7, corresponding to critical 
spin-spin correlations that grow rather than decrease with increasing spin separation, 
has been encountered previously in the n + 0 vector model (Saleur 1987b and references 
therein). Combining equation ( l l a ) ,  the exact bulk exponents v =$, y =%, and our 
estimate for 7iP, we find yip = 1.454 i: 0.004. 
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I 

-0.06 

-0.07 

vip 
-0.08 

-0.09 

-0.10 

I I I 

0.1 0.2 0.3 > 
L“ 

Figure 3. Curves 1 and 3 show estimates for q y =  2xj” at the special transition from tables 
1 and 3. Curves a and b show the quantity 2L[?r5V)(Ks,  K*)]-’  with K,=0.7730 and 
0.7745, respectively, and with K *  given by equation ( 6 ) .  Our estimate of the exact value 
is indicated by a heavy vertical bar. 

Duplantier and Saleur (1986) have proposed the relation x j i )  = hi+ , , ,  for the surface 
scaling dimension of i-polymer vertices in the desorbed phase. Here h , ,  is defined by 
the Kac formula h , ,  = [ ( 3 r  - 2 s ) ’ -  11/24. This conjecture reproduces the exact results 

- 8 ,  x:*) = 2 for the ordinary transition discussed above and is consistent with 
numerical evidence for i > 2 .  We note that an analogous relation xLi) = hi+,,3 is compat- 
ible with our results for the special transition, yielding xjl) = -&, i.e. vip = -A, -yip = g, 

In summary, with transfer-matrix finite-size scaling methods we have studied a 
model for polymer adsorption in two dimensions equivalent to the n + 0 vector model 
on a semi-infinite square lattice. For the desorbed polymer phase (ordinary transition 
of the magnetic system) our results confirm the accepted exact values of several bulk 
and surface critical exponents. The adsorption temperature and the critical exponents 

xjl) - 5 

and x:*)=$, i.e. y : P = $ ,  4 ‘ P = L  2 .  
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Table 4. Critical values K :  for which the correlation length t Y ’ ( K : ,  K * )  diverges, with 
K* given by equation (6). 

One polymer Two polymers 

L K :  1 K: 

2 0.725 1354 
3 0.737 2544 
4 0.743 6243 
5 0.747 6726 
6 0.750 5321 
7 0.752 6871 
8 0.754 3837 
9 0.755 7624 

10 0.756 9101 

3 0.929 9088 
4 0.897 4993 
5 0.878 0769 
6 0.864 8723 
7 0.855 1933 
8 0.847 7333 
9 0.841 7731 

10 0.836 8815 

-y;” of the special transition were evaluated with a considerable reduction in the 
uncertainty of earlier estimates. 
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Note added in prooj The exact result @p = f has recently been derived with conformal invariance methods 
(Burkhardt et a /  1989). 
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